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Main Idea:

A dual representation of Gaussian distribution:
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Our main idea is to estimate the posterior distri-
bution of neural networks with this formulation,
also called information form. Key benefits are:
•Approximate Bayesian inference can be
simplified to scalable Laplace Approximation
with provable guarantees.
•Sparsity can be exploited as information
content on each parameters tends to be sparse
with over-parameterization.

Bayesian Neural Networks

Bayesian framework of Neural Networks by inferring
probability distributions over models weights:

p(θ|x, y) = p(y|x, θ)p(θ)
p(y|θ)

(1)

Marginalization over possible values of parameters
for predictive uncertainty:

p(y∗|x∗, x, y) = ∫
p(y∗|x∗, θ)p(θ|x, y)dθ (2)

One of the main challenge is scalability!

Important Results:

Bayesian Neural Network with an expressive vari-
ational family can scale to large deep neural net-
works and data-sets (e.g. Dense121 on ImageNet
classification task), while the space complexity
remains similar to mean-field approximations.

Approximate Inference

•Use Laplace Approximation:

p(θ|D) ∼ N (θmap, I
−1) or ∼ N−1(θIVmap, I).

Only need estimates of the Hessian of neural net-
works, e.g. information matrix I .
•Diagonals are known and easy to compute:

I = E[δθδθT ] and I ii = E[δθ2
i ]

This is not true for the covariance matrix.
•Kronecker Eigen-decomposition plus diagonal:

I inf = (UA ⊗ UG)Λ(UA ⊗ UG)T + D

Eigenvalues Λ and diagonal matrix D are computed
using the known diagonals of information matrix.
Leads to a guarantee that the information matrix
is more accurate than the state-of-the-art Hessian
approximators, e.g. KFAC, w.r.t a norm.

Sparsification Algorithm

a. Find K top eigenvalues b. Select corresponding 
eigenvectors

c. Select remaining 
eigenvalues

•Conventional low rank approximation cannot
preserve the Kronecker structure!
•We propose a simple Kronecker-based
sparsification algorithm (shown in figure above).

Results

• ImageNet out-of-distribution detection tasks.

Low Rank Sampling Computations

•Predictive uncertainty requires sampling:

p(y∗|x∗) ≈ 1
T

T∑
t=1
y∗(x∗, θst ) for θst ∼ N−1(θIVMAP , I inf).

This requires an expensive inversion!
•The devised cheaper computation routine:
1. Low rank approximation while saving Kronecker
products in eigenvectors.

I inf ≈ Î inf = (Ua ⊗ Ug)Λ1:L(Ua ⊗ Ug)T + D

2.The samples can be drawn from the information
form, in which we need an inversion over only L by
L matrix rather than the whole parameter space.

•Space complexity comparisons.
Diag KFAC EFB INF

Model Size Size Size Size
ResNet18 44.6 362.4 407.0 47.0
ResNet50 97.3 586.9 684.2 105.3
ResNet152 229.0 1485.9 1714.9 250.1
DenseNet121 30.1 393.3 423.4 37.0
DenseNet161 108.6 1446.2 1554.7 123.3

•Our approach can scale to large data-sets and
architectures such as ImageNet set-ups.
•Expressive posterior family can be made as
tractable as mean-field approximations.
•Other experiments can be found in our ICML
2020 paper. Link.

Extension 1

•On how Bayesian Optimization can be used to
further improve the performance, and ease the
hyperparameter searches. Link.

Extension 2

•On how our method can be used for the task of
learning the motion of a car using IMU and
monocular cameras. Link.

Open-source Software

•Curvature Library at DLR-RM github

https://arxiv.org/abs/2006.11631
https://arxiv.org/pdf/2010.16141.pdf
https://arxiv.org/pdf/2007.07630.pdf
https://github.com/DLR-RM/curvature

