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DLR Aerial Robotics: Planetary Exploration
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DLR Aerial Robotics: Solar Powered UAVsS




On Importance of Reliability and Robustness of a Perception System

» Field robotics applications — outdoor environments.

« Safety critical systems — both at research and industry levels.

How to leverage Deep Learning techniques from
computer vision research to robotic perception?



Returning Distributions Rather Than A Single, Most Likely Guess.

S. Thrun et al, “Probabilistic Algorithms and the Interactive Museum Tour-Guide Robot Mineva”, IJRR 2000.

* Probabilistic robotics at the age of deep learning.

 Major challenges lie in uncertainty quantification of neural network.




Uncertainty Quantification of Neural Networks
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Uncertainty Quantification of Neural Networks

y

“tennis ball”

training
label

X

(]

training
image

convolutional
layers

fully connected

layers

/A

softmax

A 4

N> o () K
%E ——— > yxlog(p)
k=1

N\ X /\ 4

Z

cross-entropy
loss function



Uncertainty Quantification of Neural Networks

convolutional

layers fully connected
_ layers
x = ~1l_softmax M
> o () K
Yy ; —»—Zyk log(pk)
“tennis ball” ) k=1
N B a L Z cross-entropy
training training a loss function
label image
Wi b Standard training:
Wy by
W =

Find a single set of parameters
that best fits my data

- Maximum likelihood principles




Uncertainty Quantification of Neural Networks
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- Define prior: p(w)
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« Bayesian learning of posterior: p(w|X,Y) < p(y|X,w)p(w)

e Prediction: p(y*IX, Y, x*) = jp(y*lx*,w)p(wIX, Y)dw

Bayesian Neural Networks --Tishby et al “Consistent inference of probabilities in layered networks: Predictions and Generalization”, 1989 IJCNN




Uncertainty Quantification of Neural Networks
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Major challenges

« Bayesian learning of posterior: p(w|X,Y) < p(y|X,w)p(w) in curse of high dimensionality!

e Prediction: p(y*IX, Y, x*) = jp(y*lx*,w)p(wIX, Y)dw

Bayesian Neural Networks --Tishby et al “Consistent inference of probabilities in layered networks: Predictions and Generalization”, 1989 IJCNN




Overview of PhD Research

Bayesian Neural Networks
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Overview of PhD Research

Bayesian Neural Networks 1. On Priors 3. On Prediction  mixtures of GP Experts
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Lee et al, “Bilateral Teleoperation of Aerial Manipulators with Virtual Reality from Robotic Perception and Active Learning” (Under Review at Field Robotics)
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SAM — The Latest Generation of DLR Aerial Manipulators

Deployment and Retrieval of Inspection Robotic Crawler [1]

[1] Lee et al, “Visual-Inertial Telepresence for Aerial Manipulation” ICRA 2020.
[2] Balachandran et al, “Shared Controller for Aerial Manipulation” (in preparation)




Virtual Reality from Robotic Perception

Virtual Reality
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« If known geometry: combination of marker tracking
and visual-inertial SLAM. l _

« If unknown geometry: combination of surface %

reconstruction and dynamic Lidar SLAM.
- Object detector is based on deep learning.

B

industrial objects sensors

(a) scene graph with flat hierarchy




Towards Industrial Applications




Active Learning using Bayesian Neural Networks
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[1] Ren et al, “A Survey of Deep Active Learning” ACM Computing Surveys 2022. *Optimal Experiment Design

[2] Lee et al, “Estimating Model Uncertainty of Neural Networks in Sparse Information Form” ICML 2020.




Active Learning Results: Redundancy in the Data
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« Main Take-Away: Lots of redundancy in the data; Only 25% could be good enough.
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Active Learning Results: Uncertainty Estimates
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« Well-calibrated uncertainty estimates matters for performance of active learning in practice.




Outdoor Flight Experiments and Operations at Night
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« Over 68 successful experiments in different locations, users, seasons and lightning.
« Between 1.82-1.83 faster task execution time with the VR system when compared to only camera.




Conclusion

Uncertainty quantification in neural network predictions for robotic perception.

Bayesian Deep Learning = Bayesian reasoning applied to neural networks.
Challenging due to high dimensional weight space.

Overview of my PhD — priors, posteriors and predictions, designed for robotic perception.

Active learning applied to VR-based teleoperation system for aerial manipulation.

Main take-away: data preparation is a practical problem, and probabilistic approach through
uncertainty modelling can help in obtaining a solution with active learning.
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Thank you for listening!

Perception and Cognition department EU2020 AEROARMS and SAM Team




