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What do we mean by ‘uncertainty’?

Return a distribution over predictions 

rather than a single prediction.

▪ Output label along with its confidence.

▪ Output mean along with its variance.

Can machines know

when they don’t know?

Regression

Classification
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𝒑 𝒚∗ 𝓓, 𝒙∗ = න𝒑 𝒚∗ 𝒙∗,𝒘 𝒑 𝒘 𝓓 𝒅𝒘

≈
𝟏

𝐓
σ𝐭=𝟏
𝐓 𝐲∗ 𝐱∗,𝒘𝐭

𝐬 𝒘𝐭
𝐬 ∼ 𝐩 𝒘 𝑿,𝒀 .

Stochastic methods

▪ MC-dropout (Gal et al 2015).

▪ Deep ensemble (Lakshminarayanan et a 2017).

Well-known examples
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𝒑 𝒚∗ 𝓓, 𝒙∗ = න𝒑 𝒚∗ 𝒙∗,𝒘 𝒑 𝒘 𝓓 𝒅𝒘

≈ 𝒇 𝐱∗,𝒘 .

▪ Distillation (Korattikara et al 2015).

▪ Linear propagation (Postels et a 2019).
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Challenges – uncertainty in neural networks

Efficiency

Uncertainty Quality

Deterministic methods

Stochastic methods

▪ Gaussian Processes (GPs) as golden 

standards of probabilistic machine learning.
▪ (Rasmussen and Williams 2006, MIT Press)

▪ State-of-the-art GPs – efficient predictions,
e.g., (Pleiss et al, 2018 ICML).



MAIN IDEA: NEURAL NETWORKS AS SPARSE GAUSSIAN PROCESSES



Neural Tangent Kernel theory – inspirations

Radford Neal, “Priors for Infinite 

Networks”, 1994.

▪ Pioneered the connections between

GPs and neural networks.

▪ Assume increasing width, single

hidden layer, independent priors on 

neural network weights.

▪ Then, neural networks converge to

GPs with a specific kernel, known as 

“the Neural Tangent Kernel (NTK)”.

▪ Multiple hidden layers!

→ (J.Lee et al, ICLR 2018).

→ (Matthews et al, ICLR 2018).

▪ Convolution layers!
→ (Alonso et al, ICLR 2019).

▪ Bayesian inference!

→ (Khan et al, NeurIPS 2019).

▪ Finite width!

→ (Novak et al, ICML 2022).

And many others!



The derived theory and proof paths



The derived theory and proof paths

▪ Mixtures of experts (MoE) are an ensemble 

model with a gating function and many 

experts/models (Jacobs et al 1991).

▪ Assume a strict division of data.

Preliminaries

NN is any neural networks (MLP, convolution, etc.)

that have valid Jacobians!

𝒚 = ෍

𝒎=𝟏

𝑴

𝒈𝒎 𝒙 𝒇𝒘(𝒙)

with 1 pick at the time.
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The derived theory and proof paths

▪ Mixtures of experts (MoE) are an ensemble 

model with a gating function and many 

experts/models (Jacobs et al 1991).

▪ Assume a strict division of data.

Preliminaries

Bayesian Duality

1. Direct application of (Khan et al 2019) on 

each neural network (NNs) experts.

2. Local DNN experts, cast as local GPs with 

the NTK (in a Bayesian sense).

3. Then, probabilistic independence between 

each experts → a simple proof technique.

ෑ𝒑 𝒘𝒎;𝑫𝒎 ෑ𝒑(𝒇𝒎; ෪𝑫𝒎 )
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Key insights

▪ Imagination that we don’t try to train these 

models, but they are given pre-trained.

𝒇𝒘 𝒙 = 𝒇𝒘𝟏 𝒙 = 𝒇𝒘𝟐 𝒙 … = 𝒇𝒘𝑴(𝒙)

𝒚 = ෍

𝒎=𝟏

𝑴

𝒈𝒎 𝒙 𝒇𝒘 𝒙 = 𝒇𝒘 𝒙



The derived theory and proof paths

Preliminaries

▪ But we wanted to connect between a single 

DNN and MoE-GPs. Not MoE-NNs!

Bayesian Duality

Problem

Key insights

▪ Imagination that we don’t try to train these 

models, but they are given pre-trained.

▪ Due to hard portioning, we can prove that 

input-prediction relationships of a single 

DNN and a MoE-GP are equivalent, if all 

DNN experts are the same as a single NN.

▪ Single NN can be an already well trained 

NN with maximum likelihood principles.  



The derived theory and proof paths

Preliminaries Bayesian duality

Problem Key insights

Final point

▪ This leads to an approximation step. A MoE-GP with the NTK

approximates the true equivalent GP with NTK by: 

▪ This means closer data points in kernel space should be

together, and otherwise, the data points can be separated apart.

▪ Revealing how a variant of sparse GPs can provably

approximate uncertainty of DNN predictions. 
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Main advantages by design:

▪ Neural Networks for accurate
most-likely predictions.

▪ Sparse Gaussian Processes for
well-calibrated uncertainty estimates:
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The resulting predictive model

Main advantages by design:

▪ Neural Networks for accurate
most-likely predictions.

▪ Sparse Gaussian Processes for
well-calibrated uncertainty estimates:

y= 𝒇𝒘(x)

Note

but one can prove: 𝐲 ≠ ෤𝐲 𝛔 𝐲 = 𝛔(෤𝐲)

ෑ𝒑(𝒇𝒎; ෪𝑫𝒎 )𝒑 𝒘;𝑫 ≈with



Results

Live demo at CoRL 2022 with a GPU-laptop to

demonstrate real-time uncertainty estimates.

Simulating failures (distributional shift)Nominal case (similar to training data)

First real-time demo of deep learning uncertainty to our knowledge!



Results

▪ Run-time comparison on a GPU-desktop and an embedded GPU. Higher FPS the faster.

▪ Entropy histogram. More separable, better calibrated the uncertainty estimates.

Main take-away/use-cases: when sparse GPs can scale, real-time uncertainty estimates from a GP 

formulation of neural networks can be obtained, improving over the state-of-the-art methods. 

Scalability test upto approx. 2 million data-points, ablation studies, comparison to five state-of-the-art

methods across 12 evaluation setting, and toy examples are provided in the paper.



Conclusion

▪ The problem of sampling-free

uncertainty estimation.

▪ Theoretic connection between

neural networks and mixtures of GP 

experts through the neural tangent

kernel → predictive model!

▪ Use-case: if sparse GPs can be

tamed, faster and better uncertainty.

Neural Networks as Sparse Gaussian Processes for Uncertainty Quantification

J. Lee et al, “Trust Your Robots! Predictive Uncertainty Estimation of Neural Networks with Sparse Gaussian Processes”, CoRL2021.


